Acu-Trac[™] Off Vehicle Applications and

Fuel Data Messaging

Table of Contents

Section	Description	Page
1	Introduction	4
2	Applications	4
2.1	Fuel Purchase Optimization Application	6
2.1.2	Process with Acu-Trac [™] Fuel Level Sensor	7
2.1.3	Closing the Fuel Optimization Loop	9
2.1.4	Fueling Location is Different than the Recommended/No Optimization in Place	10
2.1.5	Preventing Low Fuel Blown Optimizations/Skipped Fuel Stops	11
2.2	Low Fuel Warnings Application	12
2.3	Fuel Fraud Detection	13
2.3.1	Fuel Purchase Exceptions/Fuel Loss	13
2.3.2	Fuel Loss Report	14
2.3.3	Fuel Purchase Exception Report	15
2.4	Fuel Tax Odometer Support	16
2.5	Fuel Tax Idle Fuel Rebates	17
2.6	Fuel Usage Report Containing Tank MPG and Idle Fuel	18
2.6.1	Idle/Tamper Fuel Rebate Report	18
2.6.2	Fuel Usage Report	19
3	Message Descriptions	21
3.1	Qualcomm Binary Messaging	21
3.1.1	Initializing the Remote Data Link	22
3.1.2	Issuing a Fuel Data Request Command	26
3.2	Fuel Data Message	29
3.3	Event Based Messages	33
3.3.1	Minimized Fuel Add Return Message	34
3.3.2	Minimized Fuel Loss Return Message	36
3.3.3	Minimized Idle Tamper Return Message	37
3.3.4	Minimized Sensor/ECM Exchange Return Message	38
3.3.5	Minimized Low Fuel Return Message	39
3.3.6	Minimized PTO Return Message	41
3.3.7	Minimized Fuel Data Message	42
3.4	Fuel Level Sensor Configuration Messages	44
3.4.1	Satellite Communications Parameters Write Message	44
3.4.2	Satellite Communications Parameter Read Message	47
3.4.3	Tank Capacity Write Message	48
3.4.4	Tank Capacity Read Message	49
3.4.5	Tank Capacity Response Message	49
3.4.6	Tank Parameters Write Message	50
3.4.7	Tank Parameters Read Message	52
3.4.8	Tank Parameters Response Message	52
3.4.9	CRC Generation	54
3.5	Connection Error Notification Message	55
3.6	Parsing Acu-Trac™ ROTA Messages	56

SSI TECHNOLOGIES, INC. Controls Division 1309 Plainfield Ave. Janesville, WI 53545-0450 Phone: (608) 758-1500 Fax: (608) 758-2491 www.ssitechnologies.com

SSI Technologies, Inc. — CONTROLS DIVISION —

Acu-Trac[™] Off Vehicle Applications and

Fuel Data Messaging

LIST OF FIGURES

Figure	Description	Page
1	Fleet Fuel Management System	5
2	Fuel Optimization Data Flow Diagram.	6
3	Fuel Optimization System with Acu-Trac™ Fuel Level Sensor	7
4	Closing the Fuel Optimization Loop Data Flow Diagram	9
5	Low Fuel Warning Data Flow Diagram	12
6	Fuel Purchase Exceptions/ Fuel Loss Data Flow Diagram	13
7	Fuel Loss Report Example	14
8	Fuel Purchase Exception Report	16
9	Data Flow Diagram for Fuel Tax Support	17
10	Data Flow Diagram for Generation of the Fuel Usage Report	19
11	Tank MPG Report	20

SSI TECHNOLOGIES, INC. Controls Division 1309 Plainfield Ave. Janesville, WI 53545-0450 Phone: (608) 758-1500 Fax: (608) 758-2491 www.ssitechnologies.com

SSI Technologies, Inc. — CONTROLS DIVISION —

Acu-Trac[™] Off Vehicle Applications and

Fuel Data Messaging

LIST OF TABLES

Table	Description	Page
1	Binary message to program MCT for communications with Acu-Trac™	22
2		23
	Flag field for Acu-Trac™ Fuel Level Sensor	
3	Device Information Message	24
4	Fuel Data Request Command	27
5	Fuel Data Message	29
6	Transmit Reason Bit Definitions.	33
7	Minimized Fuel Add Message	34
8	Minimized Fuel Loss Message	36
9	Minimized Idle/Tamper Message	37
10	Minimized Sensor/ECM Exchange Message	38
11	Minimized Low Fuel Message	39
12	Minimized PTO Data Message	41
13	Minimized Fuel Data Message	42
14	Satellite Communications Parameters	44
15	Communication Option Parameter	45
16	Satellite Communication Parameter	47
17	Tank Capacity Write Message	48
18	Tank Capacity Read Message	49
19	Tank Capacity Configuration Data	50
20	Tank Parameters Write Message	51
21	Tank Parameters Response Message	52
22	Connection Error Notification Message	55
23	Error Flags Definition	55
24	ROTA Binary Messages	56

SSI TECHNOLOGIES, INC. Controls Division 1309 Plainfield Ave. Janesville, WI 53545-0450 Phone: (608) 758-1500 Fax: (608) 758-2491 www.ssitechnologies.com

SSI Technologies, Inc. — CONTROLS DIVISION —

1 Introduction

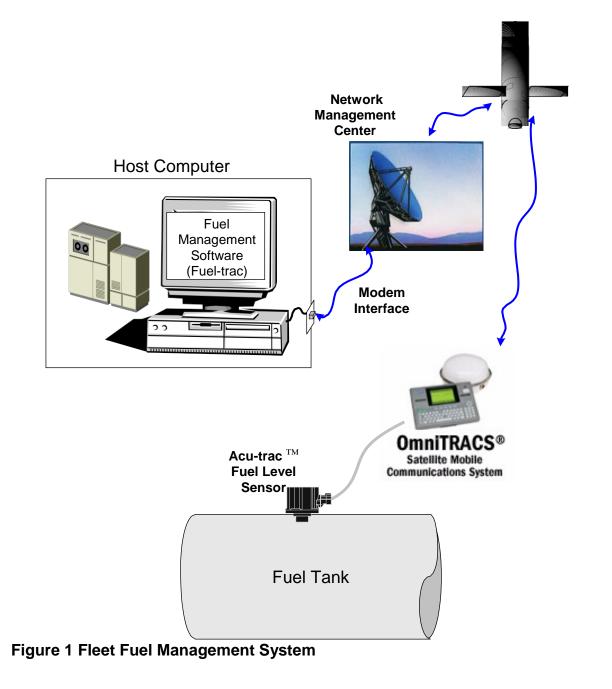
As shown in the figure 1, the Acu-TracTM fuel level sensor provides the missing ingredient to form a comprehensive Fleet Fuel Management System. In conjunction with Qualcomm Omni TRACS® system, Acu-TracTM provides fuel-related data such as fuel level and drive MPG on request. In addition, Acu-TracTM provides real-time notification of fuel adds, fuel losses, idle fuel, low fuel warnings, and more.

2 Applications

This document focuses on the applications for the fuel-related data items. These applications include:

- 1. Fuel Purchase Optimization
- 2. Low Fuel Warnings to Prevent Running Out of Fuel
- 3. Fuel Fraud Detection
- 4. Fuel Tax Odometer Support
- 5. Fuel Tax Idle Fuel Rebates
- 6. Fuel Usage Report containing Tank MPG and Idle Fuel.

Details on the algorithms and the required data flow are presented to aid in the development of Host Computer Fuel Management Software that supports these applications.

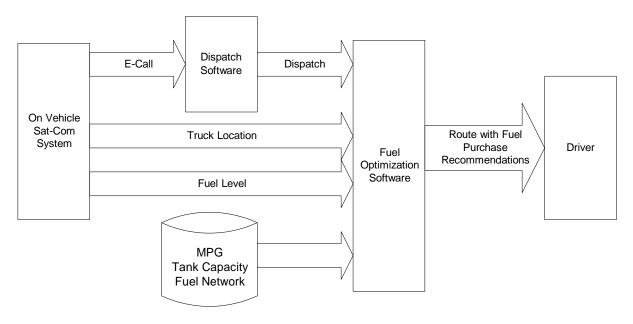

This document also provides the binary message formats needed to request and parse the Acu-TracTM fuel related messages.

The Host Computer Fuel Management Software is called the "Fuel-trac" application in this document for brevity.

SSI TECHNOLOGIES, INC. Controls Division 1309 Plainfield Ave. Janesville, WI 53545-0450 Phone: (608) 758-1500 Fax: (608) 758-2491 www.ssitechnologies.com

SSI Technologies, Inc. — CONTROLS DIVISION —

SSI TECHNOLOGIES, INC. Controls Division 1309 Plainfield Ave. Janesville, WI 53545-0450 Phone: (608) 758-1500 Fax: (608) 758-2491 www.ssitechnologies.com



SSI Technologies, Inc. — CONTROLS DIVISION —

2.1 Fuel Purchase Optimization Application

2.1.1 Overview of Process

Figure 2 below shows a data flow diagram of a typical fuel optimization process. The driver sends an Empty Call Macro in order to receive a new dispatch. The driver includes an indication of the fuel level, typically a number from one to eight that is based on the number of eighths the fuel gauge indicates. Appended to the Empty Call Macro is the current truck location. The Dispatch Software assigns the truck a new dispatch, which includes the pick-up and delivery locations. This data is feed into the Fuel Optimization Software when the new dispatch is created. The fuel optimization software reads Truck MPG, Truck Tank Capacity, and Fuel Network data and creates an optimized route with fuelling recommendations. The optimized route and fuel recommendations are sent back to the driver using the on-vehicle satellite communications system.

Figure 2 Fuel Optimization Data Flow Diagram.

SSI TECHNOLOGIES, INC. Controls Division 1309 Plainfield Ave. Janesville, WI 53545-0450 Phone: (608) 758-1500 Fax: (608) 758-2491 www.ssitechnologies.com

SSI Technologies, Inc. — CONTROLS DIVISION —

2.1.2 Process with Acu-Trac[™] Fuel Level Sensor

Figure 3 shows the fuel optimization process using the Acu-TracTM Fuel Level Sensor. Data from the Acu-TracTM Fuel Level Sensor's Fuel Add message is used to perform the optimization. The Acu-TracTM Fuel Level Sensor sends in Fuel Level, Drive MPG, and Odometer at the time of each Fuel Add. This data is saved into the Fuel-trac database.

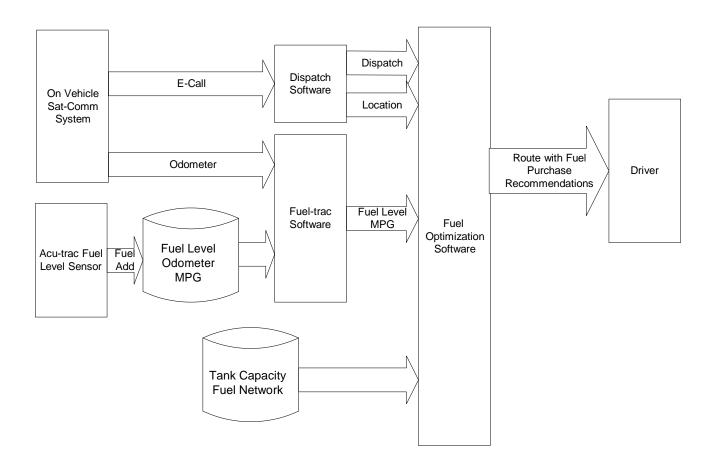


Figure 3. Fuel Optimization System with Acu-Trac[™] Fuel Level Sensor.

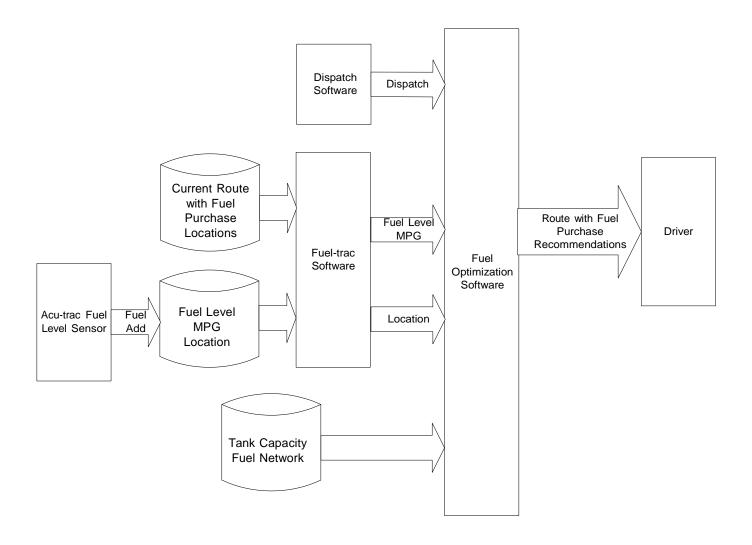
SSI TECHNOLOGIES, INC. Controls Division 1309 Plainfield Ave. Janesville, WI 53545-0450 Phone: (608) 758-1500 Fax: (608) 758-2491 www.ssitechnologies.com

SSI Technologies, Inc. — CONTROLS DIVISION —

Again, the driver sends an Empty Call Macro in order to receive a new dispatch. The current truck odometer is appended to the Empty Call Macro using Qualcomm's Auto Fill Fields feature along with the current truck location. The Fuel-trac software picks up the odometer reading and performs the following calculation:

Current Fuel Level = Fuel Add Fuel Level – (Current Odometer – Fuel Add Odometer)/Drive MPG

The Current Fuel Level and Drive MPG are sent to the Fuel Optimization Software when the new dispatch is created by the Fuel-trac software. The fuel optimization software reads Truck Tank Capacity and Fuel Network data and creates an optimized route with fuelling recommendations. The optimized route and fuel recommendations are sent back to the driver using the on-vehicle satellite communications system.


SSI TECHNOLOGIES, INC. Controls Division 1309 Plainfield Ave. Janesville, WI 53545-0450 Phone: (608) 758-1500 Fax: (608) 758-2491 www.ssitechnologies.com

SSI Technologies, Inc. — CONTROLS DIVISION —

2.1.3 Closing the Fuel Optimization Loop

Figure 4 shows the data flow diagram for closing the fuel optimization loop.

Figure 4 Closing the Fuel Optimization Loop Data Flow Diagram.

SSI TECHNOLOGIES, INC. Controls Division 1309 Plainfield Ave. Janesville, WI 53545-0450 Phone: (608) 758-1500 Fax: (608) 758-2491 www.ssitechnologies.com

SSI Technologies, Inc. — CONTROLS DIVISION —

2.1.4 Fueling Location is Different than the Recommended/No Optimization in Place

The Acu-Trac[™] Fuel Level Sensor's Fuel Add Message contains the location of each fuel purchase. The Fuel-trac software determines the Latitude/Longitude of the recommended stop using the Zip Code from the Current Route with Fuel Purchase Recommendations database. If no Fuel Purchase Recommendation is found for this truck, the Fuel-trac software will immediately send a message to the driver manager. The Fuel Purchase Recommendation Zip Code is used to look up Latitude/Longitude for the Fuel Purchase Location from the Zip Code to Latitude/Longitude Database. Using the Latitude/Longitude contained in the Fuel Add Message for "lat2", the following equation is performed:

Approximate distance in miles = sqrt(x * x + y * y)

where x = 69.1 * (lat2 - lat1)and y = 69.1 * (lon2 - lon1) * cos (lat1/57.3)

The above equation assumes that the Latitude and Longitude are in degrees and the cos function requires radians.

After completing the calculation, if the distance is greater than a preset distance (default 100 miles), then the driver fueled at a location other than the one recommended by the optimizer. The Fuel-trac software then requests a new optimization.

Note: The 100-mile distance is used to allow tank equalization. For trucks with two fuel tanks, if the driver adds fuel to only one tank, a period of time as long as an hour is required for the tanks to equalize. The Acu-TracTM Fuel Level Sensor monitors the fuel in a single tank and detects the tank equalization condition. The Acu-TracTM Fuel Level Sensor waits until the tanks have equalized before sending out the Fuel Add Message.

SSI TECHNOLOGIES, INC. Controls Division 1309 Plainfield Ave. Janesville, WI 53545-0450 Phone: (608) 758-1500 Fax: (608) 758-2491 www.ssitechnologies.com

SSI Technologies, Inc. — CONTROLS DIVISION —

2.1.5 Preventing Low Fuel Blown Optimizations/Skipped Fuel Stops

The Acu-Trac[™] Fuel Level Sensor's Fuel Add Message contains the Fuel Level after the fuel purchase and the current Drive MPG for the truck. The Fuel-trac software determines the validity of the current optimization by checking the projected fuel level at the next fuel stop. Again, the Latitude/Longitude of the previous completed fuel stop is found using the Zip Code from the Current Route with Fuel Purchase Recommendations database. The Latitude/Longitude of the next fuel stop is found in the same manner. Using the Latitude/Longitude of each of the fuel stops, the following equation is performed:

Approximate distance in miles = sqrt(x * x + y * y)

where x = 69.1 * (lat2 - lat1)and y = 69.1 * (lon2 - lon1) * cos (lat1/57.3)

The above equation assumes that the Latitude and Longitude are in degrees and the cos function requires radians.

After completing the calculation, the projected fuel at the level at the next stop is calculated as follows:

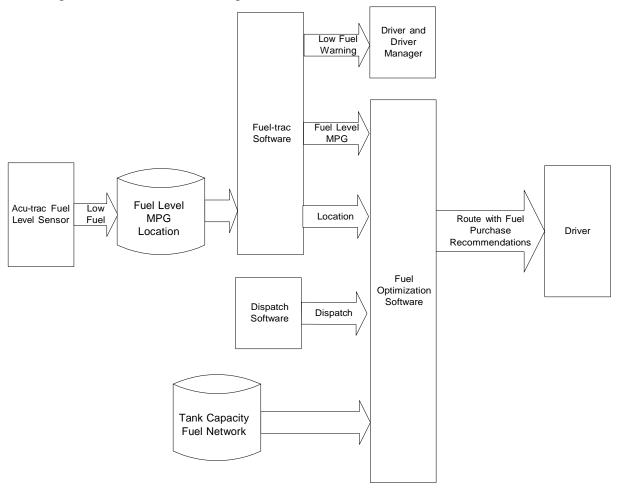
Projected Fuel Level = Previous Fuel Level – Distance/Drive MPG.

If the Projected Fuel Level is less than a preset level (default 40 gallons) then the fuel level will be too low. The Fuel-trac software then requests a new optimization.

In addition the Maximum Fuel Add is calculated using the following formula:

Maximum Fuel Add = Tank Capacity – Projected Fuel Level.

If the Maximum Fuel Add is less than a preset level (default 50 gallons) then the fuel level will be too high coming into the stop. The Fuel-trac software then requests a new optimization.


SSI TECHNOLOGIES, INC. Controls Division 1309 Plainfield Ave. Janesville, WI 53545-0450 Phone: (608) 758-1500 Fax: (608) 758-2491 www.ssitechnologies.com

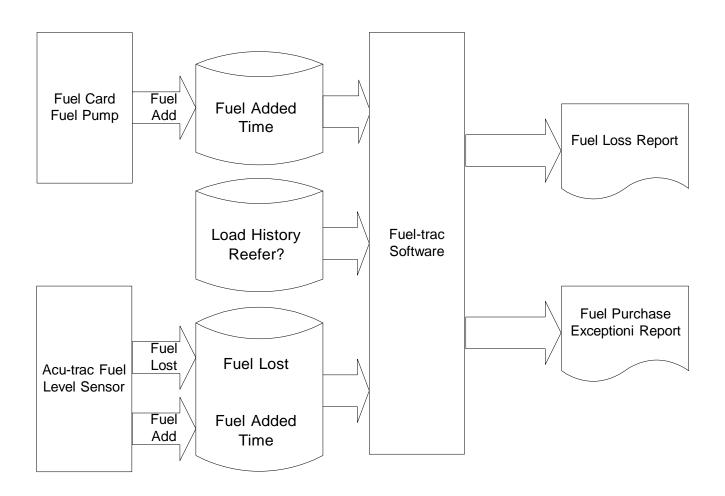
SSI Technologies, Inc. — CONTROLS DIVISION —

2.2 Low Fuel Warnings Application

Figure 5 shows the data flow diagram for detection of Low Fuel conditions. The Acu-TracTM Fuel Level Sensor sends out a Low Fuel Warning Message based on a configurable fuel threshold. The message contains the Fuel Level, MPG and Truck Location. The Fuel-trac software immediately requests a re-optimization on receiving this message. The Fuel-trac software sends a Low Fuel Warning Message to the Driver Manager and a Low Fuel Warning Macro to the Driver.

Figure 5 Low Fuel Warning Data Flow Diagram

SSI TECHNOLOGIES, INC. Controls Division 1309 Plainfield Ave. Janesville, WI 53545-0450 Phone: (608) 758-1500 Fax: (608) 758-2491 www.ssitechnologies.com



SSI Technologies, Inc. — CONTROLS DIVISION —

2.3 Fuel Fraud Detection

2.3.1 Fuel Purchase Exceptions/Fuel Loss

Figure 6 shows the data flow diagram for generation of the Fuel Loss Report and the Fuel Purchase Exceptions Report.

Figure 6 Fuel Purchase Exceptions/ Fuel Loss Data Flow Diagram.

SSI TECHNOLOGIES, INC. Controls Division 1309 Plainfield Ave. Janesville, WI 53545-0450 Phone: (608) 758-1500 Fax: (608) 758-2491 www.ssitechnologies.com

SSI Technologies, Inc. — CONTROLS DIVISION —

2.3.2 Fuel Loss Report

The Acu-TracTM Fuel Level Sensor sends out a Fuel Loss message based on a configurable fuel threshold. The message contains the Fuel Level, Fuel Lost, Time/Date and Truck Location. The Fuel-trac software allows user input of a date range. The Fuel-trac software generates a Fuel Loss Report. An example of the Fuel Loss Report is shown in Figure 7.

Fuel Level Sensor Fuel Loss Report Date: 10/01/01 – 10/30/01

Truck ID	Date	Time	Location	Fuel Level	Fuel Lost
43578	10/01/01	10:22	Green Bay, WI	120.3	23.4
21897	10/05/01	1:43	Chicago, IL	88.8	34.2
19273	10/11/01	12:33	Atlanta, GA	26.3	25.8
68350	10/19/01	14:55	Phoenix, AZ	93.2	40.3
50329	10/28/01	20:23	Portland, OR	143.2	56.3
33221	10/30/01	0:23	Dallas, TX	89.3	44.9

Figure 7. Fuel Loss Report Example.

SSI TECHNOLOGIES, INC. Controls Division 1309 Plainfield Ave. Janesville, WI 53545-0450 Phone: (608) 758-1500 Fax: (608) 758-2491 www.ssitechnologies.com

SSI Technologies, Inc. — CONTROLS DIVISION —

2.3.3 Fuel Purchase Exception Report

The Acu-Trac[™] Fuel Level Sensor sends out a Fuel Add Message based on a configurable fuel threshold. The message contains the Fuel Level, Fuel Added, Time/Date, Odometer, and Truck Location. The Fuel-trac software allows user input of a date range. The Fuel-trac software generates a Fuel Purchase Fraud Report using the following procedure.

- 1. Searching backwards from the end date of the report, for each Fuel Purchase reported by the Fuel Card System (COMDATA, TCHECK, etc.), get the time/date of the purchase.
- 2. Using the time/date of the purchase, search the Acu-Trac[™] Fuel Add Database for the Fuel Add that occurs immediately (within 24 hours) after this time/date.
- 3. If no Fuel Add is found, report the exception using "-"for Fuel Add Sensor and Fuel Level.
- 4. Compare the Fuel Add quantity from the Acu-Trac[™] Fuel Add Database to the Fuel Purchase quantity.
- 5. If the fuel purchase quantity is greater than the Fuel Add quantity from the Acu-TracTM Fuel Add Database by a User entered threshold (ten gallons or more), then the discrepancy is reported.
- 6. Search the Load History Database to determine if the Trailer was a reefer. If so place "Yes" in the Reefer Column. Otherwise "No".

An example of the Fuel Purchase Exception Report is shown in Figure 8.

SSI TECHNOLOGIES, INC. Controls Division 1309 Plainfield Ave. Janesville, WI 53545-0450 Phone: (608) 758-1500 Fax: (608) 758-2491 www.ssitechnologies.com

SSI Technologies, Inc. — CONTROLS DIVISION —

Fuel Level Sensor Fuel Purchase Fraud Report Date: 10/01/01 – 10/30/01

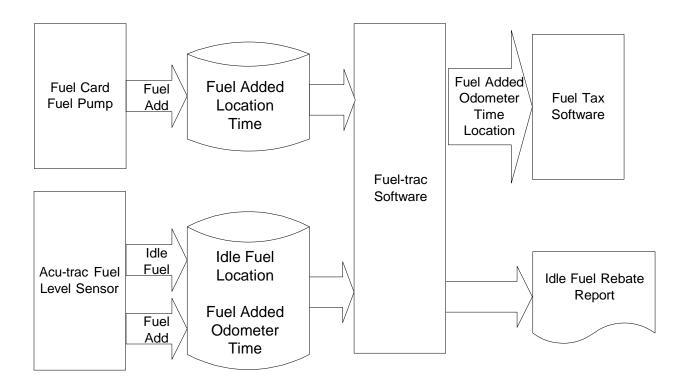
Truck ID	Refer	Date	Fuel Purch Time	Location	Fuel Level	Fuel Purch	Fuel Add Sensor	Fuel Missing
53578	Yes	10/02/01	10:22	Green Bay, WI	185.6	113.7	80.3	33.4
31897	No	10/06/01	1:43	Chicago, IL	-	83.2	-	83.2
29273	Yes	10/12/01	12:33	Atlanta, GA	119.3	82.1	56.3	25.8
78350	Yes	10/18/01	14:55	Phoenix, AZ	93.2	103.9	63.6	40.3
60329	Yes	10/27/01	20:23	Portland, OR	123.2	128.4	72.1	56.3
43221	No	10/30/01	0:23	Dallas, TX	95.3	114.2	69.3	44.9

Figure 8 Fuel Purchase Exception Report

2.4 Fuel Tax Odometer Support

The Acu-TracTM Fuel Level Sensor sends out a Fuel Add Message based on a configurable fuel threshold. The message contains the Fuel Level, Fuel Added, Time/Date, Odometer and Truck Location. The Fuel-trac software provides Odometer support for Fuel Tax using the following procedure.

- 1. For each Fuel Purchase reported by the Fuel Card System (COMDATA, TCHECK, etc.), get the time/date of the purchase.
- 2. Using the time/date of the purchase, search the Acu-Trac[™] Fuel Add Database for the Fuel Add that occurs immediately after this time/date.
- 3. Use the corresponding odometer value from the Acu-TracTM Fuel Add Database as the Fuel Tax Odometer entry.


SSI TECHNOLOGIES, INC. Controls Division 1309 Plainfield Ave. Janesville, WI 53545-0450 Phone: (608) 758-1500 Fax: (608) 758-2491 www.ssitechnologies.com

SSI Technologies, Inc. — CONTROLS DIVISION —

2.5 Fuel Tax Idle Fuel Rebates

Figure 9 shows the data flow diagram for odometer capture in support of Fuel Tax Reporting and for the generation of the Idle Fuel Rebate Reports.

Figure 9 Data Flow Diagram for Fuel Tax Support.

SSI TECHNOLOGIES, INC. Controls Division 1309 Plainfield Ave. Janesville, WI 53545-0450 Phone: (608) 758-1500 Fax: (608) 758-2491 www.ssitechnologies.com

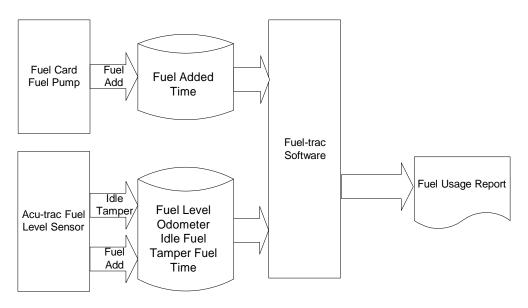
SSI Technologies, Inc. — CONTROLS DIVISION —

2.6 Fuel Usage Report Containing Tank MPG and Idle Fuel

2.6.1 Idle/Tamper Fuel Rebate Report

The Acu-Trac® Fuel Level Sensor sends out an Idle/Tamper Fuel message based on a configurable fuel threshold. The message contains the Idle Fuel Used, Tamper Fuel, Time/Date, Odometer and Truck Location. The Fuel-trac software generates the Idle/Tamper Fuel Rebate Report using the following procedure.

- 1. For each Idle/Tamper Fuel message sent by the sensor, get the time/date of the idle event.
- 2. Using the time/date of the idle event, search the position records for this truck and get the Truck Position Latitude and Longitude that was reported immediately before this idle event.
- 3. Using mapping software, enter the latitude and longitude to determine if the idle event occurred off of state maintained roads and rest stops. If the stop occurred on private property, examine the states fuel tax laws for a possible rebate.


SSI TECHNOLOGIES, INC. Controls Division 1309 Plainfield Ave. Janesville, WI 53545-0450 Phone: (608) 758-1500 Fax: (608) 758-2491 www.ssitechnologies.com

SSI Technologies, Inc. — CONTROLS DIVISION —

2.6.2 Fuel Usage Report

Figure 10 shows the data flow diagram for generation of the Fuel Usage Report.

Figure 10 Data Flow Diagram for Generation of the Fuel Usage Report.

The Acu-Trac[™] Fuel Level Sensor's Fuel sends out a Fuel Add message based on a configurable fuel threshold. The message contains the Fuel Level, Fuel Added, Time/Date, Odometer, and Truck Location. The Fuel-trac software generates the Fuel Usage Report for a vehicle using the following procedure:

- 1. For each Fuel Purchase reported by the Fuel Card System (COMDATA, TCHECK, etc.), get the time/date of the purchase.
- 2. Using the time/date of the purchase, search the Acu-Trac[™] Fuel Add Database for the Fuel Add that occurs immediately after this time/date.
- 3. Search the Acu-Trac[™] Fuel Add Database for the previous fuel purchase that occurred for this truck.
- 4. Calculate the Fuel Burned using the following formula:

Fuel Used = Current Fuel Level – Previous Fuel Level + COMDATA Fuel Added.

SSI TECHNOLOGIES, INC. Controls Division 1309 Plainfield Ave. Janesville, WI 53545-0450 Phone: (608) 758-1500 Fax: (608) 758-2491 www.ssitechnologies.com

SSI Technologies, Inc. — CONTROLS DIVISION —

5. Calculate the distance driven using the following formula:

Distance = Current Fuel Add Truck Odometer – Previous Fuel Add Truck Odometer.

6. Tank MPG is then calculated using the following formula:

Tank MPG = Distance/Fuel Used.

- 7. Calculate the Percent Idle Fuel/Percent Tamper Fuel used by summing the Idle Fuel Quantity/Tamper Fuel Quantity for Idle/Tamper Messages received between the Fuel Adds and dividing by the Fuel Used Quantity.
- 8. Totals are calculated by summing Fuel Used and Distance. Average MPG over the time period is calculated as follows:

Ave Tank MPG = Summed Distance/Summed Fuel Used.

An example of the Tank MPG Report is shown in Figure 11.

Fuel Level Sensor Fuel Usage Report Truck 34321 Date: 10/01/01 – 10/30/01

Date	Fuel Used	Percent Idle Fuel	Percent Tamper Fuel	Distance	Tank MPG
10/02/01	185.6	4.3	0.0	1271.4	6.85
10/06/01	108.3	7.4	0.0	792.8	7.32
10/12/01	119.3	0.0	6.7	825.6	6.92
10/18/01	93.2	8.6	0.0	601.1	6.45
10/27/01	123.2	6.5	0.0	834.1	6.77
10/30/01	95.3	0.0	8.4	690.0	7.24
Totals	724.9	4.4	2.2	5015.0	6.92

Figure 11 Tank MPG Report

SSI TECHNOLOGIES, INC. Controls Division 1309 Plainfield Ave. Janesville, WI 53545-0450 Phone: (608) 758-1500 Fax: (608) 758-2491 www.ssitechnologies.com

SSI Technologies, Inc. — CONTROLS DIVISION —

3 Message Descriptions

The Acu-Trac^{$^{\text{TM}}$} sensor's off-vehicle fuel data communications capability is set up to operate in conjunction with Qualcomm's OmniTRACS® system. In order to take advantage of the sensors off-vehicle communications you'll need a Qualcomm MCT Firmware version 16.10 or later attached to the vehicle's J1708 serial data bus.

The remote acquisition of fuel data is facilitated by the sensor's ability to communicate over the J1708 data bus and link through existing communications services. The system provides the capability of receiving the fuel sensor data based on a request or automatically through event driven messages.

Events include the following:

Request – The data can be read on request from the "Host" software.

Fuel Added – The sensor can automatically send the fuel data upon a fuel purchase.

Fuel Lost – The sensor can automatically send the fuel data when a configurable amount of fuel "disappears" from the tank.

Idle Fuel – The sensor can automatically send the fuel data when a configurable amount of idle fuel is burned.

PTO Fuel – The sensor can automatically send the fuel data when a configurable amount of PTO fuel is burned.

Low Fuel Warning – The sensor can automatically send the fuel data when a fuel level is below a configurable limit.

In addition the sensor can be configured to automatically reset the data on successful transmission of the data.

3.1 Qualcomm Binary Messaging

An application program running on a computer at a customer facility creates the binary messages described below. These messages are encapsulated in packets including such header information as the MCT number and the binary channel (in this case always 6). They are then imported into QTRACS for transmission to the NMC through QTRACS External Application Link (EAL). The import packet format is specific to the QTRACS

SSI TECHNOLOGIES, INC. Controls Division 1309 Plainfield Ave. Janesville, WI 53545-0450 Phone: (608) 758-1500 Fax: (608) 758-2491 www.ssitechnologies.com

SSI Technologies, Inc. — CONTROLS DIVISION —

platform (e.g. QTRACS/400 or QTRACS/Windows, etc), and is not described in this document; please refer to the appropriate QTRACS documentation. The NMC receives the messages from the customer facility and repackages them for over the air transmission to the MCT.

3.1.1 Initializing the Remote Data Link

The Qualcomm Mobile Communication Terminal, MCT, (located in the vehicle) must first, be programmed to recognize the existence of the Acu-Trac[®] fuel sensor on the vehicle's J1708 data bus. The programming operation is executed remotely by issuing a free form binary text *Initialization Command* from the base unit over the Qualcomm network to the vehicle's MCT. The following binary message is used to program the Qualcomm MCT for communication to and from the Acu-Trac[®] fuel sensor MID 143.

10038F0F0001B5070001DD0D0001

Byte	Value	Definition
1	0x10	Device MID Configuration Message
2	0x03	Number of MID's being Configured.
3	0x8F	Fuel Level Sensor MID 143
4	0x0F	Bit packed flag field for Fuel Level Sensor
5-6	0x0001	Maximum Transmission Rate from the Fuel Level Sensor in Minutes
7	0xB5	Satellite Communications MID 181(MCT Sat. Comm. MID)
8	0x07	Bit packed flag field for Satellite Communications
9-10	0x0001	Maximum Transmission Rate from the MCT in Minutes.
11	0xDD	Driver Information Center #2 MID 221(MCT Display MID)
12	0x0D	Bit packed flag field for Driver Information Center #2
13	0x0001	Maximum Transmission Rate from the MCT Display in Minutes.

Table 1 Binary message to program MCT for communications with Acu-Trac[™]

SSI TECHNOLOGIES, INC. Controls Division 1309 Plainfield Ave. Janesville, WI 53545-0450 Phone: (608) 758-1500 Fax: (608) 758-2491 www.ssitechnologies.com

SSI Technologies, Inc. — CONTROLS DIVISION —

The Bit Packed Flag Field is defined in the following table. Note that a bit value of "1" is enabled and a bit value of "0" is disabled.

Bit	Definition	Description
0	Device Information Monitoring Enabled	The MCT will automatically monitor the Device Information from the Fuel Level Sensor and Report changes through a Device Information Message
1	Device ROTA (Return Over the Air) Enable.	The Fuel Level Sensor is enabled to send event-based messages back to the application software program.
2	Device FOTA (Forward Over The Air) Enable.	The MCT is enabled to send messages to the Fuel Level Sensor.
3	Device Freeform Display Enable.	The device is enabled to send display messages.
4-7	Reserved.	Reserved.

Table 2 Flag field for Acu-Trac[™] Fuel Level Sensor

Once initialization is complete, the vehicle's MCT will send a Device Information Message for each of the MIDs contained in the Initialization Message (143, 181, and 221). These messages will be returned as binary type 006 messages. The Device Information Message for the fuel level sensor provides the fuel level sensor's serial number, model number, revision level, software part numbers all packaged into an 82 character binary text string:

Please pay particularly close attention to Bytes 4 through 36 (characters 8 through 72), of the Binary Text String. They comprise the Acu-TracTM fuel sensor's serial number, model number, revision level, software part numbers and revision levels, which must be retained by the user and inserted into the FOTA messages that are sent to the fuel level sensor. These messages are described latter in this chapter.

138F02464C5331320130083032303331303031108F313331373134352A31333136303732E6B4F11EE6

SSI TECHNOLOGIES, INC. Controls Division 1309 Plainfield Ave. Janesville, WI 53545-0450 Phone: (608) 758-1500 Fax: (608) 758-2491 www.ssitechnologies.com

SSI Technologies, Inc. — CONTROLS DIVISION —

The definitions and identifications contained within the binary text string are coded as follows (hexadecimal):

Byte	Value	Definition
1	0x13	Device MID Message
2	0x8F	Fuel Sensor MID
3	0x02	Device Information Message
4	0x46	ASCII Sensor Make always "F", 0x46
5	0x4C	ASCII Make always "L", 0x4C
6	0x53	ASCII Make always "S", 0x53
7	0x31	ASCII Make always "1", 0x31
8	0x32	ASCII Make always "2", 0x32
9	0x01	Number of Make revision level characters, 1
10	0x30	ASCII Make revision level, "0"
11	0x08	Number of Serial # bytes to follow
12	0x30	ASCII Sensor S/N 1 st Character Year "0"
13	0x32	ASCCII S/N 2 nd Character Year "2"
14	0x30	ASCII S/N 1 st Character Day "0"
15	0x33	ASCII S/N 1 st Character Day "3"
16	0x31	ASCII S/N 1 st Character Day "1"
17	0x30	ASCII S/N 1 st Character "0"
18	0x30	ASCII S/N 1 st Character "0"
19	0x31	ASCII S/N 1 st Character "1"
20	0x10	Number of Software P/N + sensor MID bytes to follow
21	0x8F	Fuel Sensor MID
22	0x31	ASCII fuel sensor measurement software P/N, 1st digit, always "1"
23	0x33	ASCII fuel sensor measurement software P/N, 2 nd digit, always "3"
24	0x31	ASCII measurement software P/N, 3 rd , always "1"
25	0x37	ASCII measurement software P/N, 4 th , always "7"
26	0x31	ASCII measurement software revision level, MSB, "1"
27	0x34	ASCII measurement software revision level, MSB-1 "4"
28	0x35	ASCII measurement software revision level, LSB "5"

Table 3 Device Information Message

SSI TECHNOLOGIES, INC. Controls Division 1309 Plainfield Ave. Janesville, WI 53545-0450 Phone: (608) 758-1500 Fax: (608) 758-2491 www.ssitechnologies.com

SSI Technologies, Inc. — CONTROLS DIVISION —

Byte	Value	Definition
29	0x2A	ASCII delimiter between P/N's always *
30	0x31	ASCII fuel sensor communications software P/N, 1 st digit, always "1"
31	0x33	ASCII communications software P/N, 2 nd digit, always "3"
32	0x31	ASCII communications software P/N, 3 rd digit, always "1"
33	0x36	ASCII communications software P/N, 4 th digit, always "6"
34	0x30	ASCII communications software rev level, MSB, "0"
35	0x37	ASCII communications software rev level, MSB-1, "7"
36	0x32	ASCII communications software rev level, LSB, "2"
37	0xE6	
38	0xB4	
39	0XF1	
40	0x1E	Message CRC high byte, Always 1E
41	0xE6	Message CRC low byte, Always E6

Table 3 Device Information Message (Cont.)

Device Information Message bytes 4 through 36 (bold font) comprise the *Acu-Trac*[®]TM *Sensor Identification String* which is unique for each sensor and will be extracted and embedded into the *Fuel Optimization Command* later on in this chapter:

Acu-Trac[™] Sensor Identification String - Sample

464C5331320130083032303331303031108F313331373134352A31333136303732

This information, Acu-TracTM Sensor Identification String, must be retained as it is an integral part of the free-form binary command structure set up by Qualcomm for linking J1708 data through the Qualcomm communications network.

Important Note: Even though the Qualcomm MCT has its own unique Make Model and ID included in each transmission the sensor's identification (Make Model, and Serial) also must be included in the free form messages to the MCT in order for the data transfer to occur correctly.

SSI TECHNOLOGIES, INC. Controls Division 1309 Plainfield Ave. Janesville, WI 53545-0450 Phone: (608) 758-1500 Fax: (608) 758-2491 www.ssitechnologies.com

SSI Technologies, Inc. — CONTROLS DIVISION —

3.1.2 Issuing a Fuel Data Request Command

The fuel data request command is a binary text message that contains the Fuel Command Header in addition to the Acu-TracTM fuel sensor specific identification. (*Note - the Acu-Trac*TM *fuel sensor specific identification detail was embedded in the Qualcomm MCT's Device Information response as described previously.*) The fuel command is used to interrogate Acu-TracTM fuel sensor and cause it to provide a return message containing the fuel data.

The process begins by creating the *Fuel Data Request Command* and then posting the command through QTRACS® in the same manner as the Initialization Command. Upon receipt of the Fuel Data Request Command the Qualcomm MCT responds by interrogating the Acu-TracTM fuel sensor over the J1708 data link and then transfers the fuel information back over the Qualcomm network in the form of a free form binary message.

The *Fuel Data Request Command* is unique for every $Acu-Trac^{TM}$ sensor MCT combination due to the method employed by Qualcomm for communicating to other devices over the J1708 data link. The binary text section for the Fuel *Data Request Command* is defined as follows:

13008F	Acu-Trac® Sensor Identification	008FCD	CFDB
Bytes 1-3	Bytes 4 through 36 – extracted from	Bytes 37-39	Bytes 40-41
	Device Information Message	Fuel Data Request	CRC

Using the device information from the example above gives the following binary text string:

13008F464C5331320130083032303331303031108F313331373134352A31333136303732008FCDCFDB

SSI TECHNOLOGIES, INC. Controls Division 1309 Plainfield Ave. Janesville, WI 53545-0450 Phone: (608) 758-1500 Fax: (608) 758-2491 www.ssitechnologies.com

String

SSI Technologies, Inc. — CONTROLS DIVISION —

The definitions and identifications contained within the binary text string are coded as follows (hexadecimal):

Byte	Value	Definition
1	0x13	Device MID Message
2	0x00	Device Addressed FOTA Message.
3	0x8F	Device MID(0x8F = 143 Fuel Level Sensor)
4	0x46	ASCII Sensor Make always "F", 0x46
5	0x4C	ASCII Make always "L", 0x4C
6	0x53	ASCII Make always "S", 0x53
7	0x31	ASCII Make always "1", 0x31
8	0x32	ASCII Make always "2", 0x32
9	0x01	Number of Make revision level characters, 1
10	0x30	ASCII Make revision level, "0"
11	0x08	Number of Serial # bytes to follow
12	0x30	ASCII Sensor S/N 1 st Character Year "0"
13	0x32	ASCCII S/N 2 nd Character Year "2"
14	0x30	ASCII S/N 1 st Character Day "0"
15	0x33	ASCII S/N 1 st Character Day "3"
16	0x31	ASCII S/N 1 st Character Day "1"
17	0x30	ASCII S/N 1 st Character "0"
18	0x30	ASCII S/N 1 st Character "0"
19	0x31	ASCII S/N 1 st Character "1"
20	0x10	Number of Software P/N + sensor MID bytes to follow
21	0x8F	Fuel Sensor MID
22	0x31	ASCII fuel sensor measurement software P/N, 1st digit, always "1"
23	0x33	ASCII fuel sensor measurement software P/N, 2 nd digit, always "3"
24	0x31	ASCII measurement software P/N, 3 rd , always "1"
25	0x37	ASCII measurement software P/N, 4 th , always "7"
26	0x31	ASCII measurement software revision level, MSB, "1"
27	0x34	ASCII measurement software revision level, MSB-1 "4"
28	0x35	ASCII measurement software revision level, LSB "5"

Table 4 Fuel Data Request Command

SSI TECHNOLOGIES, INC. Controls Division 1309 Plainfield Ave. Janesville, WI 53545-0450 Phone: (608) 758-1500 Fax: (608) 758-2491 www.ssitechnologies.com

SSI Technologies, Inc. — CONTROLS DIVISION —

Byte	Value	Definition	
29	0x2A	ASCII delimiter between P/N's always *	
30	0x31	ASCII fuel sensor communications software P/N, 1 st digit, always "1"	
31	0x33	ASCII communications software P/N, 2 nd digit, always "3"	
32	0x31	ASCII communications software P/N, 3 rd digit, always "1"	
33	0x36	ASCII communications software P/N, 4 th digit, always "6"	
34	0x30	ASCII communications software rev level, MSB, "0"	
35	0x37	ASCII communications software rev level, MSB-1, "7"	
36	0x32	ASCII communications software rev level, LSB, "2"	
37	0x00	Fuel Data Request Command Byte 1	
38	0x8F	Fuel Data Request Command Byte 2	
39	0XCD	Fuel Data Request Command Byte 3	
40	0xCF	Message CRC high byte, Always CF	
41	0xDB	Message CRC low byte, Always DB	

Table 4 Fuel Data Request Command (Cont.)

Bytes 4 through 36 (bold font) comprise the *Acu-Trac*TM Sensor Identification String which is unique for each sensor and was extracted from the Device Information Message earlier this chapter:

SSI TECHNOLOGIES, INC. Controls Division 1309 Plainfield Ave. Janesville, WI 53545-0450 Phone: (608) 758-1500 Fax: (608) 758-2491 www.ssitechnologies.com

SSI Technologies, Inc. — CONTROLS DIVISION —

3.2 Fuel Data Message

The Acu-Trac[™] Fuel Sensor generates a *Fuel Data Message* in response to the *Fuel Data Request Command* or upon a fuel event.

Once the fuel related data transfer between Acu-Trac[™] fuel sensor and the vehicle's MCT has been completed the vehicle's MCT will forward the message through the Qualcomm network and into your QTRACS® application. The QTRACS® External Application's Link will provide the data to your application program.

The definitions and identifications contained within the binary text string, are coded as shown below, (All Values are in Hexadecimal)

Byte	Value	Definition	
1	0x13	Qualcomm MCT	
2	0x8F	Fuel Sensor MID	
3	0x00	Always 0x00 for a Fuel Data Response	
4	0x00	Reserve byte always 0x00	
5	0x02	MSB of the fuel quantity in 1/8 gallon increments	
6	0xED	LSB of the fuel quantity in 1/8 gallon increments	
7	0x00	MSB of the fuel tank capacity in 1 gallon increments	
8	0x64	LSB of the fuel tank capacity in 1 gallon increments	
9	0x05	MSB of the fuel economy in 1/256 MPG increments	
10	0xDD	LSB of the fuel economy in 1/256 MPG increments	
11	0x00	MSB of the idle fuel in 1/8 gallon increments.	
12	0xB8	LSB of the idle fuel in 1/8 gallon increments.	
13	0x00	MSB of the PTO fuel in 1/8 gallon increments.	
14	0x4B	LSB of the PTO fuel in 1/8 gallon increments.	
15	0x07	MSB of the Tamper fuel in 1/8 gallon increments.	
16	0x2B	LSB of the Tamper fuel in 1/8 gallon increments.	
17	0x01	MSB of the Lost fuel in 1/8 gallon increments.	
18	0x48	LSB of the Lost fuel in 1/8 gallon increments.	

Table 5 Fuel Data Message

SSI TECHNOLOGIES, INC. Controls Division 1309 Plainfield Ave. Janesville, WI 53545-0450 Phone: (608) 758-1500 Fax: (608) 758-2491 www.ssitechnologies.com

SSI Technologies, Inc. — CONTROLS DIVISION —

Byte	Value	Definition	
19	0x01	MSB of the Added fuel in 1/8 gallon increments.	
20	0x2B	LSB of the Added fuel in 1/8 gallon increments.	
21	0xC0	Transmit Reason – See definition below.	
22	0x15	Fuel Temperature	
23	0x01	D3 (MSB) of Life to Date Total Fuel	
24	0x33	D2 of Life to Date Total Fuel	
25	0x1D	D1 of Life to Date Total Fuel	
26	0xCA	D0 (LSB) of Life to Date Total Fuel	
27	0x02	D3 (MSB) of Life to Date Total Distance	
28	0x41	D2 of Life to Date Total Distance	
29	0xD9	D1 of Life to Date Total Distance	
30	0xF2	D0 (LSB) of Life to Date Total Distance.	
31	0x00	Spare	
32	0x44	CRC high byte	
33	0xC8	CRC low byte	

Table 5 Fuel Data Message (Cont.)

SSI TECHNOLOGIES, INC. Controls Division 1309 Plainfield Ave. Janesville, WI 53545-0450 Phone: (608) 758-1500 Fax: (608) 758-2491 www.ssitechnologies.com

SSI Technologies, Inc. — CONTROLS DIVISION —

Decoding the Fuel Data Message

The illustration below details the structure of the binary text component of the *Fuel Data Message* as depicted in the previous example.

Fuel Quantity on Remaining (bytes 5 &	6)	Im
Fuel Quantity	= 0x02ED	Th
Convert to Decimal	= 749	bas
Convert to gallons (divide by 8)	= 749/8 = 93.6 gallons	av 16
Fuel Tank Capacity (bytes 7 & 8)		op
Tank Capacity	= 0x0064	the
Convert to Decimal	= 100 gallons	ser
Fuel Economy in MPG (bytes 9 & 10)	-	res
Fuel Economy	= 0x05DD	rar
Convert to Decimal	= 0x03DD = 1501	tra 10
		mi
Convert to MPG (divide by 256)	= 1570/256 = 5.86 mpg	A
Idle Fuel (bytes 11 & 12)		va
Idle Fuel	= 0x00B8	ava
Convert to Decimal	= 184	vel
Convert to gallons (divide by 8)	= 184/8 = 23 gallons	op ho
PTO Fuel (bytes 13 & 14)		the
PTO Fuel	= 0x004B	ser
Convert to Decimal	= 75	
Convert to gallons (divide by 8)	= 75/8 = 9.38 gallons	
Tamper Fuel (bytes 15 & 16)		
Tamper Fuel	= 0x072B	
Convert to Decimal	= 1835	
Convert to gallons (divide by 8)	= 1835/8 = 229.38 gallons	

Important Note:

he Average MPG is used on a running verage covering the last 6 hours of vehicle peration. In performing e calculation, the nsor excludes idling at st, stops, and out of nge data such as aveling in excess of 00 miles or less than 20 iles in one hour. valid average MPG alue will not be vailable until the chicle has been perating for at least 16 ours on the road with e Acu-Trac[™] fuel nsor installed.

SSI TECHNOLOGIES, INC. Controls Division 1309 Plainfield Ave. Janesville, WI 53545-0450 Phone: (608) 758-1500 Fax: (608) 758-2491 www.ssitechnologies.com

SSI Technologies, Inc. — CONTROLS DIVISION —

Lost Fuel (bytes 17 & 18) Lost Fuel Convert to Decimal Convert to gallons (divide by 8)	= 0x0148 = 328 = 328/8 = 41 gallons
Added Fuel (bytes 19 & 20) Added Fuel Convert to Decimal Convert to gallons (divide by 8)	= 0x012B = 299 = 299/8 = 37.38 gallons
Transmit Reason (byte 21) Transmit Reason	=0xC0
Fuel Temperature (byte 22) Fuel Temperature Convert to Decimal	=0x15 =21 degrees C.
Life to Date Total Fuel (byte 23-26) Life to Date Total Fuel Convert to Decimal Convert to gallons (divide by 8)	=0x01331DCA = 20127178 = 2515897.25 gallons.
Life to Date Total Distance (byte 23-26) Life to Date Total Distance Convert to Decimal Convert to miles (divide by 10)	=0x0241D9F2 = 37870066 = 3787006.6 miles

Bits 7 and 6 are set. See Table Below for Transmit Reason definition. The data was received due to being requested and an ECM Exchange.

SSI TECHNOLOGIES, INC. Controls Division 1309 Plainfield Ave. Janesville, WI 53545-0450 Phone: (608) 758-1500 Fax: (608) 758-2491 www.ssitechnologies.com

SSI Technologies, Inc. — CONTROLS DIVISION —

Acu-Trac[™] Off Vehicle Applications and

Fuel Data Messaging

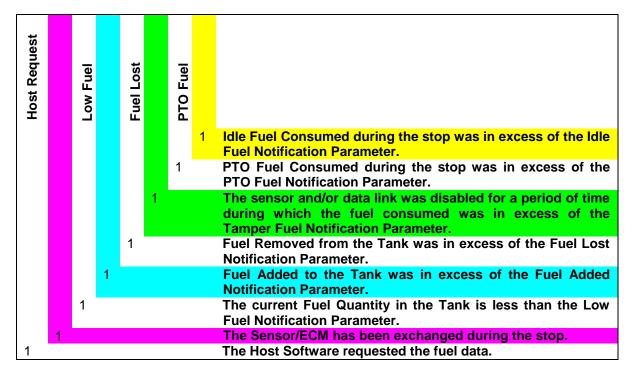


 Table 6 Transmit Reason Bit Definitions.

3.3 Event Based Messages

As previously mentioned, the Acu-TracTM Fuel Level Sensor supports fuel event based messaging. The fuel level sensor supports two modes of operation based on the Minimized Messages bit in the Satellite Communications Parameters previously defined. If the Minimized Message bit is disabled the fuel level sensor will send out the Fuel Data Message on each event. Reference the Fuel Data Message Section for the definition of this message. If the Minimized Message bit is enabled, the fuel level sensor will send the minimized event based messages defined below.

SSI TECHNOLOGIES, INC. Controls Division 1309 Plainfield Ave. Janesville, WI 53545-0450 Phone: (608) 758-1500 Fax: (608) 758-2491 www.ssitechnologies.com

SSI Technologies, Inc. — CONTROLS DIVISION —

3.3.1 Minimized Fuel Add Return Message

If the Minimized Message bit and the Fuel Added Transmit bit are enabled in the Satellite Communications Parameter, the Acu-TracTM fuel level sensor will send a Minimized Fuel Add Return Message each time the fuel added to the tank exceeds the Fuel Added Configuration Level defined in the Satellite Communications Parameter. The binary text for the Minimized Fuel Add Return Message is defined in the table below:

Minimized Fuel Add Return Message			
Byte	Value	Definition	
1	0x13	Qualcomm MCT	
2	0x8F	Fuel Sensor MID	
3	0x00	Always 0x00	
4	0x00	Reserve byte always 0x00	
5	0x8F	Fuel Sensor MID	
6	0x85	Header for fuel add 133	
7	0x3D	8 bit % capacity @ 0.5% per bit	
8	0x6E	8 bit mpg @ 1/16 mpg per bit	
9		MSB of the fuel add quantity in 1/8 gallon increments	
10	0x12	LSB of the fuel add quantity in 1/8 gallon increments	
11	0x02	Byte 3 of the odometer reading at the time of the add @ 0.1 miles per bit	
12	0x4B	Byte 2 of the odometer reading at the time of the add @ 0.1 miles per bit	
13	0xD1	Byte 1 of the odometer reading at the time of the add @ 0.1 miles per bit	
14	0x7C	Byte 0 of the odometer reading at the time of the add @ 0.1 miles per bit	
15	0x??	CRC high byte	
16	0x??	CRC low byte	

Table 7 Minimized Fuel Add Message

SSI TECHNOLOGIES, INC. Controls Division 1309 Plainfield Ave. Janesville, WI 53545-0450 Phone: (608) 758-1500 Fax: (608) 758-2491 www.ssitechnologies.com

SSI Technologies, Inc. — CONTROLS DIVISION —

The illustration below details the structure of the binary text component of the *Minimized Fuel Add Return Message* as depicted in the previous example.

8 bit Percent Fuel Quantity Remaining (byte 7)			
Fuel Quantity	= 0x3D	Important Note: The	
Convert to Decimal	= 61	Percent Fuel Quantity	
Convert to percent (multiply by 0.8 Multiply by Tank Capacity	5) = 30.5 percent. =0.305*190 = 57.9 gal	and Fuel Added Odometer are captured at the time of the fuel	
8 bit Fuel Economy in MPG (byte 8) Fuel Economy Convert to Decimal Convert to MPG (divide by 16)	= 0x6E = 110 = 110/16 = 6.87 mpg	add. They are captured at the time of the fuel add to allow a Tank MPG calculation. They do not reflect the Fuel	
Fuel Added Quantity (bytes 9 & 10) Fuel Added Convert to Decimal Convert to gallons (divide by 8)	= 0x0212 = 530 = 530/8 = 66.25 gal	Quantity or Odometer at the time the message is received.	
Fuel Added Odometer (bytes 11-14) Fuel Added Odometer Convert to Decimal Convert to miles (divide by 10)	= 0x024BD17C = 38523260 = 38523260/10 = 385232	26.0 miles	

SSI TECHNOLOGIES, INC. Controls Division 1309 Plainfield Ave. Janesville, WI 53545-0450 Phone: (608) 758-1500 Fax: (608) 758-2491 www.ssitechnologies.com

SSI Technologies, Inc. — CONTROLS DIVISION —

3.3.2 Minimized Fuel Loss Return Message

If the Minimized Message bit and the Fuel Loss Transmit bit are enabled in the Satellite Communications Parameter, the Acu-TracTM fuel level sensor will send a Minimized Fuel Loss Return Message each time the fuel lost from the tank exceeds the Fuel Loss Configuration Level defined in the Satellite Communications Parameter. The binary text for the Minimized Fuel Loss Return Message is defined in the table below:

Minimized Fuel Loss Return Message			
Byte	Value	Definition	
1	0x13	Qualcomm MCT	
2	0x8F	Fuel Sensor MID	
3	0x00	Always 0x00	
4	0x00	Reserve byte always 0x00	
5	0x8F	Fuel Sensor MID	
6	0x86	Header for fuel loss 134	
7	0x01	MSB of the fuel loss quantity in 1/8 gallon increments	
8	0x9E	LSB of the fuel loss quantity in 1/8 gallon increments	
9	0x??	CRC high byte	
10	0x??	CRC low byte	

Table 8 Minimized Fuel Loss Message

The illustration below details the structure of the binary text component of the *Minimized Fuel Loss Return Message* as depicted in the previous example.

	Fuel Loss Quantity (bytes 7 & 8)	
	Fuel Loss	= 0x019E
Convert to Decimal		= 414
	Convert to gallons (divide by 8)	= 414/8 = 51.75 gallons

SSI TECHNOLOGIES, INC. Controls Division 1309 Plainfield Ave. Janesville, WI 53545-0450 Phone: (608) 758-1500 Fax: (608) 758-2491 www.ssitechnologies.com

SSI Technologies, Inc. — CONTROLS DIVISION —

3.3.3 Minimized Idle Tamper Return Message

If the Minimized Message bit and the Idle Fuel Transmit bit are enabled in the Satellite Communications Parameter, the Acu-TracTM fuel level sensor will send a Minimized Idle Tamper Return Message each time the Idle fuel exceeds the Idle Fuel Configuration Level defined in the Satellite Communications Parameter. If the Minimized Message bit and the Tamper Transmit bit are enabled in the Satellite Communications Parameter, the Acu-TracTM fuel level sensor will send a Minimized Idle Tamper Return Message each time the Tamper Transmit bit are enabled in the Satellite Communications Parameter, the Acu-TracTM fuel level sensor will send a Minimized Idle Tamper Return Message each time the Tamper fuel exceeds the Tamper Fuel Configuration Level defined in the Satellite Communications Parameter. The binary text for the Minimized Idle Tamper Return Message is defined in the table below:

Minim	Minimized Idle Tamper Return Message		
Byte	Value	Definition	
1	0x13	Qualcomm MCT	
2	0x8F	Fuel Sensor MID	
3	0x00	Always 0x00	
4	0x00	Reserve byte always 0x00	
5	0x8F	Fuel Sensor MID	
6	0x87	Header for Idle/Tamper 135	
7	0x00	MSB Cumm Idle Fuel Consumed @ 1/8 gallon/bit	
8	0x45	LSB Cumm Idle Fuel Consumed @ 1/8 gallon/bit	
9	0x00	MSB Cumm Tamper Fuel Consumed @ 1/8 gal/bit	
10	0x12	LSB Cumm Tamper Fuel Consumed @ 1/8 gal/bit	
11	0x??	CRC high byte	
12	0x??	CRC low byte	

Table 9 Minimized Idle/Tamper Message

The illustration below details the structure of the binary text component of the *Minimized Idle Tamper Return Message* as depicted in the previous example.

Idle Fuel Quantity (bytes 7 & 8)	
Idle Fuel	= 0x0045
Convert to Decimal	= 69
Convert to gallons (divide by 8)	= 69/8 = 8.62 gallons
Tamper Fuel Quantity (bytes 9 & 10)	
Tamper Fuel	= 0x0012
Convert to Decimal	= 18
Convert to gallons (divide by 8)	= 18/8 = 2.25 gallons

SSI TECHNOLOGIES, INC. Controls Division 1309 Plainfield Ave. Janesville, WI 53545-0450 Phone: (608) 758-1500 Fax: (608) 758-2491 www.ssitechnologies.com

SSI Technologies, Inc. — CONTROLS DIVISION —

3.3.4 Minimized Sensor/ECM Exchange Return Message

If the Minimized Message bit and the Tamper Transmit bit are enabled in the Satellite Communications Parameter, the Acu-TracTM fuel level sensor will send a Minimized Sensor/ECM Exchange Return Message each time the sensor detects that the Component ID of the ECM has changed. This methodology was implemented to prevent drivers from switching the sensor to a different truck. Note that if this message is enabled at the time it is installed on the truck, the message will be sent.

Minim	Minimized Sensor/ECM Exchange Return Message			
Byte	Value	Definition		
1	0x13	Qualcomm MCT		
2	0x8F	Fuel Sensor MID		
3	0x00	Always 0x00		
4	0x00	Reserve byte always 0x00		
5	0x8F	Fuel Sensor MID		
6	0x8A	Header for Sensor/ECM Exchange 138		
7	0x??	CRC high byte		
8	0x??	CRC low byte		

Table 10 Minimized Sensor/ECM Exchange Message

SSI TECHNOLOGIES, INC. Controls Division 1309 Plainfield Ave. Janesville, WI 53545-0450 Phone: (608) 758-1500 Fax: (608) 758-2491 www.ssitechnologies.com

SSI Technologies, Inc. — CONTROLS DIVISION —

3.3.5 Minimized Low Fuel Return Message

If the Minimized Message bit and the Low Fuel Transmit bit are enabled in the Satellite Communications Parameter, the Acu-TracTM fuel level sensor will send a Minimized Low Fuel Return Message at the time the fuel level falls below the Low Fuel Configuration Level defined in the Satellite Communications Parameter. The binary text for the Minimized Low Fuel Return Message is defined in the table below:

Minim	Ainimized Low Fuel Return Message		
Byte	Value	Definition	
1	0x13	Qualcomm MCT	
2	0x8F	Fuel Sensor MID	
3	0x00	Always 0x00	
4	0x00	Reserve byte always 0x00	
5	0x8F	Fuel Sensor MID	
6	0x88	Header for Low Fuel 136	
7	0x3D	8 bit % capacity @ 0.5% per bit	
8	0x6E	8 bit mpg @ 1/16 mpg per bit	
9	0x02	Byte 3 of the current odometer reading @ 0.1 miles per bit	
10	0x4B	Byte 2 of the current odometer reading @ 0.1 miles per bit	
11	0xD1	Byte 1 of the current odometer reading @ 0.1 miles per bit	
12	0x7C	Byte 0 of the current odometer reading @ 0.1 miles per bit	
13	0x??	CRC high byte	
14	0x??	CRC low byte	

Table 11 Minimized Low Fuel Message

SSI TECHNOLOGIES, INC. Controls Division 1309 Plainfield Ave. Janesville, WI 53545-0450 Phone: (608) 758-1500 Fax: (608) 758-2491 www.ssitechnologies.com

SSI Technologies, Inc. — CONTROLS DIVISION —

The illustration below details the structure of the binary text component of the *Minimized Low Fuel Return Message* as depicted in the previous example.

8 bit Percent Fuel Quantity Remaining (byte 7)		
Fuel Quantity	= 0x3D	
Convert to Decimal	= 61	
Convert to percent (multiply by 0.5	5) = 30.5 percent.	
Multiply by Tank Capacity	=0.305*190 = 57.9 gal	
8 bit Fuel Economy in MPG (byte 8)		
Fuel Economy	= 0x6E	
Convert to Decimal	= 110	
Convert to MPG (divide by 16)	= 110/16 = 6.87 mpg	
Fuel Added Odometer (bytes 9-12)		
Fuel Added Odometer	= 0x024BD17C	
Convert to Decimal	= 38523260	
Convert to miles (divide by 10)	= 38523260/10 = 3852326.0 miles	

SSI TECHNOLOGIES, INC. Controls Division 1309 Plainfield Ave. Janesville, WI 53545-0450 Phone: (608) 758-1500 Fax: (608) 758-2491 www.ssitechnologies.com

SSI Technologies, Inc. — CONTROLS DIVISION —

3.3.6 Minimized PTO Return Message

If the Minimized Message bit and the PTO Fuel Transmit bit are enabled in the Satellite Communications Parameter, the Acu-tracTM fuel level sensor will send a Minimized PTO Return Message each time the PTO fuel exceeds the PTO Fuel Configuration Level defined in the Satellite Communications Parameter. The binary text for the Minimized PTO Return Message is defined in the table below:

Minim	Minimized Idle Tamper Return Message		
Byte	Value	Definition	
1	0x13	Qualcomm MCT	
2	0x8F	Fuel Sensor MID	
3	0x00	Always 0x00	
4	0x00	Reserve byte always 0x00	
5	0x8F	Fuel Sensor MID	
6	0x89	Header for PTO	
7	0x00	MSB Cumm PTO Fuel Consumed @ 1/8 gallon/bit	
8	0x45	LSB Cumm PTO Fuel Consumed @ 1/8 gallon/bit	
9	0x??	CRC high byte	
10	0x??	CRC low byte	

Table 12 Minimized PTO Data Message

The illustration below details the structure of the binary text component of the *Minimized PTO Return Message* as depicted in the previous example.

PTO Fuel Quantity (bytes 7 & 8)
 PTO Fuel = 0x0045
 Convert to Decimal = 69
 Convert to gallons (divide by 8) = 69/8 = 8.62 gallons

SSI TECHNOLOGIES, INC. Controls Division 1309 Plainfield Ave. Janesville, WI 53545-0450 Phone: (608) 758-1500 Fax: (608) 758-2491 www.ssitechnologies.com

SSI Technologies, Inc. — CONTROLS DIVISION —

3.3.7 Minimized Fuel Data Message

The Minimized Fuel Data Request command is a binary text message that contains a PID 250 request to the fuel level sensor. The syntax for the request is as follows:

238FFA000000000

The Minimized Fuel Data Request command is used to interrogate Acu-Trac[™] fuel sensor and cause it to provide a return message containing the following binary text message:

Minim	Minimized Fuel Optimization Return Message		
Byte	Value	Definition	
0	0x23	Qualcomm Specific PID Request	
1	0x00	Reserved	
2	0x8F	Fuel Level Sensor MID 143	
3	0xFA	Total Fuel PID 250	
4	0x8F	Fuel Level Sensor MID 143	
5	0x05	Total Number of Response Bytes	
6	0x04	Number of Bytes in this response	
7	0x02	MSB of the fuel quantity in 1/8 gallon increments	
8	0xED	LSB of the fuel quantity in 1/8 gallon increments	
9	0x05	MSB of the fuel economy in 1/256 MPG increments	
10	0xDD	LSB of the fuel economy in 1/256 MPG increments	
11-14		Unused.	

Table 13 Minimized Fuel Data Message

SSI TECHNOLOGIES, INC. Controls Division 1309 Plainfield Ave. Janesville, WI 53545-0450 Phone: (608) 758-1500 Fax: (608) 758-2491 www.ssitechnologies.com

SSI Technologies, Inc. — CONTROLS DIVISION —

SSI Technologies – Application Note AT-AN6 Acu-Trac™ Off Vehicle Applications and

Fuel Data Messaging

The illustration below details the structure of the binary text of the *Minimized Fuel Data Message* as depicted in the previous example.

Fuel Quantity on Remaining (bytes 7 &	8)
Fuel Quantity	= 0x02ED
Convert to Decimal	= 749
Convert to gallons (divide by 8)	= 749/8 = 93.6 gallons
Fuel Economy in MPG (bytes 9 & 10)	
Fuel Economy	= 0x05DD
Convert to Decimal	= 1501
Convert to MPG (divide by 256)	= 1570/256 = 5.86 mpg

Important Note:

The Average MPG is based on a running average covering the last 16 hours of vehicle operation. In performing the calculation. the sensor excludes idling at rest, stops, and out of range data such as traveling in excess of 100 miles or less than 20 miles in one hour. A valid average MPG value will not be available until the vehicle has been operating for at least 16 hours on the road with Acu-TracTM the fuel sensor installed.

SSI TECHNOLOGIES, INC. Controls Division 1309 Plainfield Ave. Janesville, WI 53545-0450 Phone: (608) 758-1500 Fax: (608) 758-2491 www.ssitechnologies.com

SSI Technologies, Inc. — CONTROLS DIVISION —

SSI Technologies – Application Note AT-AN6 Acu-Trac™ Off Vehicle Applications and

Fuel Data Messaging

3.4 Fuel Level Sensor Configuration Messages

3.4.1 Satellite Communications Parameters Write Message

The Acu-Trac[™] Fuel Level Sensor provides remote configuration of the following items:

- 1. Event based automatic messaging.
- 2. Idle Fuel Notification Parameter
- 3. PTO Fuel Notification Parameter
- 4. Tamper Fuel Notification Parameter
- 5. Fuel Lost Notification Parameter
- 6. Fuel Added Notification Parameter

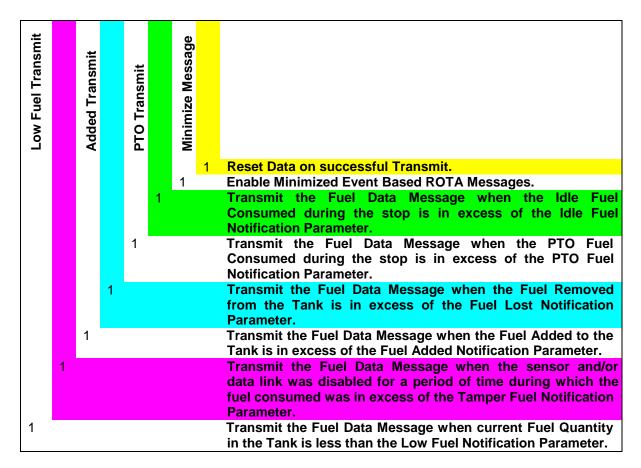
Writing the Satellite Communications Parameters to the fuel level sensor follows the same process as the Fuel Data Request Command. Reference the Fuel Data Request Command Section for more details. An example of the binary text for the Satellite Communications Write message is shown below:

Satellite Communications Parameter Write Message.

Bytes 1-3	Bytes 4 through 36 – extracted from	Bytes 37-43	Bytes 44-45
	Device Information Message	SatCom Parameters	CRC
13008F	Acu-Trac TM Sensor Identification String	008F7D5F211233	AF13

Reference the Fuel Data Request Command Section on the definition of the first 36 bytes. Bytes $37 \rightarrow 43$ constitute the Satellite Com Parameters configuration data as follows:

Byte	Value	Definition
37	0x00	Reserved Byte
38	0x8F	Fuel Sensor MID
39	0x7D	Satellite Communication Parameters identification message type
40	0x5F	Communication option parameter
41	0x21	Fill Loss Notification Parameter
42	0x12	Idle/PTO Notification Parameter
43	0x33	Tamper/Low Fuel Parameter


 Table 14 Satellite Communications Parameters

SSI TECHNOLOGIES, INC. Controls Division 1309 Plainfield Ave. Janesville, WI 53545-0450 Phone: (608) 758-1500 Fax: (608) 758-2491 www.ssitechnologies.com

SSI Technologies, Inc. — CONTROLS DIVISION —

The communications options parameter is defined as follows:

SSI TECHNOLOGIES, INC. Controls Division 1309 Plainfield Ave. Janesville, WI 53545-0450 Phone: (608) 758-1500 Fax: (608) 758-2491 www.ssitechnologies.com

SSI Technologies, Inc. — CONTROLS DIVISION —

Communications Options Parameter (byte 38) Communication Options = 0x5F

- Reset Enabled.
- Minimize Message Enabled
- Idle Transmit Enabled
- PTO Transmit Enabled
- Lost Enabled
- Adds Disabled
- Tamper Enabled
- Low Disabled
- Fill/Loss Notification Parameter (byte 39)
 Fill/Loss Parameter = 0x21
 Loss = 0x1 (Lower Nibble)
 - Loss = 0x1*10 gallons per bit = 10 gallons.
 - Fill = 0x2 (Upper Nibble)
 - Fill = 0x2 * 10 gallons per bit = 20 gallons.
- Idle/PTO Notification Parameter (byte 40) Idle/PTO Parameter = 0x12 PTO = 0x2 (Lower Nibble) PTO = 0x2*1 gallons per bit = 2 gallons. Idle = 0x1 (Upper Nibble) Idle = 0x1 * 1 gallons per bit = 1 gallons.
- Tamper/Low Fuel Notification Parameter (byte 41) Tamper/Low Fuel Parameter = 0x33 Low Fuel = 0x3 (Lower Nibble) Low Fuel = 0x3*10 gallons per bit = 30 gallons. Tamper = 0x3 (Upper Nibble) Tamper = 0x3 * 1 gallons per bit = 3 gallons.

SSI TECHNOLOGIES, INC. Controls Division 1309 Plainfield Ave. Janesville, WI 53545-0450 Phone: (608) 758-1500 Fax: (608) 758-2491 www.ssitechnologies.com

SSI Technologies, Inc. — CONTROLS DIVISION —

3.4.2 Satellite Communications Parameter Read Message

Reading the Satellite Communications Parameters from the fuel level sensor follows the same process as the Fuel Data Request Command. Reference the Fuel Data Request Command Section for more details. An example of the binary text for the Satellite Communications Read message is shown below:

Satellite Communications Parameter Read Message.

Bytes 1-3	Bytes 4 through 36 – extracted from	Bytes 37-39	Bytes 40-41	
	Device Information Message	Read Command	CRC	
13008F	Acu-Trac® Sensor Identification String	008F7D	6800	

Satellite Communications Parameter Response Message

After receiving a Satellite Communications Write Message or Read Message, the sensor will respond with the Satellite Communications Parameter Response Message. The binary text for the Satellite Communications Parameter Response Message is as follows:

Byte	Value	Definition
1	0x13	Qualcomm MCT
2	0x8F	Fuel Sensor MID
3	0x00	Always 0x00 for a Fuel Sensor Response
4	0x00	Reserve byte always 0x00
5	0x8F	Fuel Sensor MID
6	0x7D	Satellite Communications Identification message type
7	0x5F	Communication option parameter
8	0x21	Fill Loss Notification Parameter
9	0x12	Idle/PTO Notification Parameter
10	0x33	Tamper/Low Fuel Parameter
11	0xAF	MSB of CRC 16
12	0x13	LSB of CRC 16

Table 16 Satellite Communication Parameter

Reference the Satellite Communication Parameters Write Message for the definition of these bytes.

SSI TECHNOLOGIES, INC. Controls Division 1309 Plainfield Ave. Janesville, WI 53545-0450 Phone: (608) 758-1500 Fax: (608) 758-2491 www.ssitechnologies.com

SSI Technologies, Inc. — CONTROLS DIVISION —

3.4.3 Tank Capacity Write Message

Writing the Tank Capacity to the fuel level sensor follows the same process as the Fuel Data Request Command. Reference the Fuel Data Request Command Section for more details. An example of the binary text for the Tank Capacity Write message is shown below:

Tank Capacity Write Message.

Bytes 1-3	Bytes 4 through 36 – extracted from	Bytes 37-43	Bytes 44-45
	Device Information Message	Tank Capacity	CRC
13008F	Acu-Trac™ Sensor Identification String	008F7B011C5150	3659

Reference the Fuel Data Request Command Section on the definition of the first 36 bytes. Bytes 37 through 43 constitute the Tank Capacity configuration data as defined in the following table:

Byte	Value	Definition	
37	0x00	Reserved Byte	
38	0x8F	Fuel Sensor MID	
39	0x7B	Tank Capacity identification message type	
40	0x01	Fank Capacity MSB	
41	0x1C	Tank Capacity LSB	
42	0x51	Reserved	
43	0x50	Reserved	

Table 17 Tank Capacity Write Message

- □ Tank Capacity Parameter (bytes 40 and 41)
 - Tank Capacity $= 0x0^{-1}$

Convert to Decimal

= 0x011C = 284 gallons

SSI TECHNOLOGIES, INC. Controls Division 1309 Plainfield Ave. Janesville, WI 53545-0450 Phone: (608) 758-1500 Fax: (608) 758-2491 www.ssitechnologies.com

SSI Technologies, Inc. — CONTROLS DIVISION —

3.4.4 Tank Capacity Read Message

Reading the Tank Capacity from the fuel level sensor follows the same process as the Fuel Data Request Command. Reference the Fuel Data Request Command Section for more details. An example of the binary text for the Tank Capacity Read message is shown below:

Tank Capacity Read Message.

Bytes 1-3	Bytes 4 through 36 – extracted from	Bytes 37-39	Bytes 40-41
	Device Information Message	Read Command	CRC
13008F	Acu-Trac [™] Sensor Identification String	008F7B	08C6

3.4.5 Tank Capacity Response Message

After receiving a Tank Capacity Write Message or Read Message, the sensor will respond with the Tank Capacity Response Message. The binary text for the Tank Capacity Response Message is defined as follows:

Byte	Value	Definition
1	0x13	Qualcomm MCT
2	0x8F	Fuel Sensor MID
3	0x00	Always 0x00 for a Fuel Sensor Response
4	0x00	Reserve byte always 0x00
5	0x8F	Fuel Sensor MID
6	0x7B	Tank Capacity Identification message type
7	0x01	Tank Capacity MSB
8	0x1C	Tank Capacity LSB
9	0x51	Spare
10	0x50	Spare
11	0x??	MSB of CRC 16
12	0x??	LSB of CRC 16

Table 18 Tank Capacity Read Message

SSI TECHNOLOGIES, INC. Controls Division 1309 Plainfield Ave. Janesville, WI 53545-0450 Phone: (608) 758-1500 Fax: (608) 758-2491 www.ssitechnologies.com

SSI Technologies, Inc. — CONTROLS DIVISION —

3.4.6 Tank Parameters Write Message

Writing the Tank Parameters to the fuel level sensor follows the same process as the Fuel Data Request Command. Reference the Fuel Data Request Command Section for more details. An example of the binary text for the Tank Parameters Write message is shown below:

Tank Parameters Write Message.

13008F	Acu-Trac [™] Sensor Identification String	008F8141F000004120000 0000000051	F931
Bytes 1-3	Bytes 4 through 36	Bytes 37-43	Bytes 44-45
	Device Information	Tank Parameters	CRC

Reference the Fuel Data Request Command Section on the definition of the first 36 bytes. Bytes 37 through 43 constitute the Tank Capacity configuration data as defined in the following table:

Byte	Value	Definition	
37	0x00	Reserved Byte	
38	0x8F	Fuel Sensor MID	
39	0x81	Tank Parameters identification message type	
40	0x41	Tank Depth D3 (MSB)	
41	0xF0	Tank Depth D2	
42	0x00	Tank Depth D1	
43	0x00	Tank Depth D0 (LSB)	
44	0x41	Air Gap D3 (MSB)	
45	0x20	vir Gap D2	
46	0x00	Air Gap D1	
47	0x00	Air Gap D0 (LSB)	
48	0x00	Tank Width D3 (MSB)	
49	0x00	Tank Width D2	
50	0x00	Tank Width D1	
51	0x00	Tank Width D0 (LSB)	
52	0x51	Operations Mode	

Table 19 Tank Capacity Configuration Data

SSI TECHNOLOGIES, INC. Controls Division 1309 Plainfield Ave. Janesville, WI 53545-0450 Phone: (608) 758-1500 Fax: (608) 758-2491 www.ssitechnologies.com

SSI Technologies, Inc. — CONTROLS DIVISION —

Tank Depth Parameter (bytes 40 through 43) Tank Depth in Floating Point	= 0x41F00000
Convert to Decimal Air Gap Parameter (bytes 44 through 47)	= 30.0 inches
Air Gap in Floating Point Convert to Decimal	= 0x41200000 = 10.0 inches
Tank Width Parameter (bytes 48 through 51) Tank Width in Floating Point Convert to Decimal	= 0x00000000 = 0.0 inches

Decoding Operation Mode
 Operations Mode Example = 51

Bit	Bit Definition	Bit	Field Definition	Field Value
		Value		
0	Tank Geometry LSB	1	0 = Linear Distance	1 = Cylindrical
1	Tank Geometry MSB	0	1 = Cylindrical Level	Level
2	Spare		2 = Linear Level	
3	Spare		3 = Table Lookup Level	
4	Voltage Output Part	1	Enabled if Sensor has a	Voltage
			Voltage Output	Output
5	Current Output Part	0	Enabled if the Sensor	
			has a Current Output.	
6	Analog Output Mode LSB	1	1 = Linear Mode	Linear Mode
7	Analog Output Mode MSB	0	2 = Spare	
			3 = Table Output	

Table 20 Tank Parameters Write Message

SSI TECHNOLOGIES, INC. Controls Division 1309 Plainfield Ave. Janesville, WI 53545-0450 Phone: (608) 758-1500 Fax: (608) 758-2491 www.ssitechnologies.com

SSI Technologies, Inc. — CONTROLS DIVISION —

3.4.7 Tank Parameters Read Message

Reading the Tank Parameters from the fuel level sensor follows the same process as the Fuel Data Request Command. Reference the Fuel Data Request Command Section for more details. The binary text for the Tank Parameters Read message is shown below:

Tank Parameters Read Message.

Bytes 1-3	Bytes 4 through 36 – extracted from	Bytes 37-39	Bytes 40-41
	Device Information Message	Read Command	CRC
13008F	Acu-Trac® Sensor Identification String	008F81	4693

3.4.8 Tank Parameters Response Message

After receiving a Tank Parameters Write Message or Read Message, the sensor will respond with the Tank Parameters Response Message. The binary text for the Tank Parameters Response Message is defined as follows:

Byte	Value	Definition
1	0x13	Qualcomm MCT
2	0x8F	Fuel Sensor MID
3	0x00	Always 0x00 for a Fuel Sensor Response
4	0x00	Reserve byte always 0x00
5	0x8F	Fuel Sensor MID
6	0x81	Tank Parameters Identification message type
7	0x41	Tank Depth D3 (MSB)
8	0xF0	Tank Depth D2
9	0x00	Tank Depth D1
10	0x00	Tank Depth D0 (LSB)
11	0x41	Air Gap D3 (MSB)

Table 21 Tank Parameters Response Message

SSI TECHNOLOGIES, INC. Controls Division 1309 Plainfield Ave. Janesville, WI 53545-0450 Phone: (608) 758-1500 Fax: (608) 758-2491 www.ssitechnologies.com

SSI Technologies, Inc. — CONTROLS DIVISION —

Byte	Value	Definition
12	0x20	Air Gap D2
13	0x00	Air Gap D1
14	0x00	Air Gap D0 (LSB)
15	0x00	Tank Width D3 (MSB)
16	0x00	Tank Width D2
17	0x00	Tank Width D1
18	0x00	Tank Width D0 (LSB)
19	0x51	Operations Mode
20	0xF9	MSB of CRC 16
21	0x31	LSB of CRC 16

Table 21 Tank Parameters Response Message (Cont.)

SSI TECHNOLOGIES, INC. Controls Division 1309 Plainfield Ave. Janesville, WI 53545-0450 Phone: (608) 758-1500 Fax: (608) 758-2491 www.ssitechnologies.com

SSI Technologies, Inc. — CONTROLS DIVISION —

3.4.9 CRC Generation

Configuration Messages require the generation of a CRC as shown in the proceeding sections.

The CRC used is the standard 16-bit CCIT CRC calculated from the following polynomial:

 $P(x) = x^{16} + x^{12} + x^{5} + x$

Generation of the CRC starts with the data bytes for the message (Byte 37 in the above examples).

The following C++ function implements the 16-bit CCIT CRC polynomial. Only the configuration data bytes (starting with 37) are CRC'ed.

```
#define POLY16 0x1021
```

```
short CFuelFiles::CRC_16 (unsigned char *data, int Num_Bytes)
{
    int i, j;
    short crc = (short) 0xffff;
    for (i=0; i<Num_Bytes; i++)
    {
        for (j = 0; j<8; j++)
        {
            if (((short) (data[i] << (j+8)) ^crc) & 0x8000)
                 crc = (crc<<1) ^ POLY16;
            else crc <<= 1;
        }
    }
    return crc;</pre>
```

SSI TECHNOLOGIES, INC. Controls Division 1309 Plainfield Ave. Janesville, WI 53545-0450 Phone: (608) 758-1500 Fax: (608) 758-2491 www.ssitechnologies.com

}

SSI Technologies, Inc. — CONTROLS DIVISION —

3.5 Connection Error Notification Message

This message reports errors pertaining to the J1708 data link connection between the Qualcomm MCT and fuel level sensor. The binary text for the Connection Error Notification Message is defined as follows:

Byte	Value	Definition
1	0x13	Qualcomm MCT
2	0x8F	Fuel Sensor MID
3	0x01	Connection Error.
4	0x00	Reserve byte always 0x00
5	0x??	Error Flags

Table 22 Connection Error Notification Message

The Error Flags byte is defined as follows:

Bit	Description
0	Reserved
1	Device not enabled for FOTA messaging
2	J1708 bus transmission of FOTA message
	failed.
3	Device Information mismatch
4	FOTA CRC failure
5	Reserved
6	ROTA CRC failure
7	Invalid device information requested.
8-15	Reserved.

Table 23 Error Flags Definition

SSI TECHNOLOGIES, INC. Controls Division 1309 Plainfield Ave. Janesville, WI 53545-0450 Phone: (608) 758-1500 Fax: (608) 758-2491 www.ssitechnologies.com

SSI Technologies, Inc. — CONTROLS DIVISION —

3.6 Parsing Acu-Trac[™] ROTA Messages

The following table provides a list of the Binary Messages returned through Channel 6 and suggestions on parsing them.

Binary Message	Prefix	Bytes	ID	Parsing/Comments
Minimized ECM Exchange Message.	138F00	16	8A	Parse on Prefix, Length, and ID
Minimized Fuel Loss Message	138F00	20	86	Parse on Prefix, Length, and ID
Minimized PTO Message	138F00	20	89	Parse on Prefix, Length, and ID
Tank Capacity Response Message	138F00	24	7B	Parse on Prefix, Length, and ID
Satellite Communications Response Message	138F00	24	7D	Parse on Prefix, Length, and ID
Minimized Idle/Tamper Message	138F00	24	87	Parse on Prefix, Length, and ID
Minimized Low Fuel Message	138F00	28	88	Parse on Prefix, Length, and ID
Minimized Fuel Optimization Message	23008F	30	FA	Parse on Prefix, Length, and ID
Minimized Fuel Add Message	138F00	32	85	Parse on Prefix, Length, and ID
Tank Parameters Response Message	138F00	42	81	Parse on Prefix, Length, and ID
Fuel Data Response Message	138F00	66	NA	Parse on Prefix, Length
Error Information	138F01	10	NA	Parse on Prefix, Length
Device Information	138F02	82	NA	Parse on Prefix, Length
Busy Signal Message	138F03	6	NA	Parse on Prefix, Length. MCT is busy and unable to process received message.

Table 24 ROTA Binary Messages

SSI TECHNOLOGIES, INC. Controls Division 1309 Plainfield Ave. Janesville, WI 53545-0450 Phone: (608) 758-1500 Fax: (608) 758-2491 www.ssitechnologies.com

SSI Technologies, Inc. — CONTROLS DIVISION —